Euler operators and conservation laws of the BBM equation
نویسنده
چکیده
The BBM or Regularized Long Wave Equation is shown to possess only three non-trivial independent conservation laws. In order to prove this result, a new theory of Euler-type operators in the formal calculus of variations will be developed in detail.
منابع مشابه
Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملOn Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملArtificial dissipation for CPR using SBP operators
The correction procedure via reconstruction (CPR, also known as flux reconstruction) is a framework of high order semidiscretisations used for the numerical solution of hyperbolic conservation laws. Using a reformulation of these schemes relying on summation-by-parts (SBP) operators and simultaneous approximation terms (SATs), artificial dissipation / spectral viscosity operators are investigat...
متن کاملConservation laws for non–global Lagrangians
In the Lagrangian framework for symmetries and conservation laws of field theories, we investigate globality properties of conserved currents associated with non–global Lagrangians admitting global Euler–Lagrange morphisms. Our approach is based on the recent geometric formulation of the calculus of variations on finite order jets of fibered manifolds in terms of variational sequences.
متن کاملA pr 2 01 5 Field theory and weak Euler - Lagrange equation for classical particle - field systems
Abstract It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The ...
متن کامل